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Renormalization-group approach to the dynamical Casimir effect

Diego A. R. Dalvit* and Francisco D. Mazzitelli†

Departamento de Fı´sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabello´n I,
1428 Buenos Aires, Argentina
~Received 20 October 1997!

In this paper we study the one-dimensional dynamical Casimir effect. We consider a one-dimensional cavity
formed by two mirrors, one of which performs an oscillatory motion with a frequency resonant with the cavity.
The naive solution, perturbative in powers of the amplitude, contains secular terms. Therefore it is valid only
in the short time limit. Using a renormalization-group technique to resum these terms, we obtain an improved
analytical solution which is valid for longer times. We discuss the generation of peaks in the density energy
profile and show that the total energy inside the cavity increases exponentially.@S1050-2947~98!03103-5#

PACS number~s!: 42.50.Lc, 42.50.Ar, 12.20.2m
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I. INTRODUCTION

The problem of quantum fluctuations inside cavities h
attracted attention for many years@1#. A way to study the
structure of the vacuum is to distort it by changing the co
figuration of the cavity in time@2,3#. The simplest configu-
ration is that of a one-dimensional cavity formed by tw
perfectly reflecting mirrors, one of which is fixed and th
other one is allowed to move in a predetermined way,
rather, its motion is determined by the backreaction of
electromagnetic field@4#. There are in fact only a few prede
termined motions which allow an exact resolution of t
problem. In@5# a special motion for the mirror, which has a
exact solution, has been considered, and it has been sh
that the Casimir force may be resonantly enhanced. In@6# a
geometrical method for solving the problem for arbitra
wall motions has been developed, and basically the s
structure for the electromagnetic field within the cavity h
been found. Of special interest are the cases where the m
ing mirror oscillates with one of the eigenfrequencies of
unperturbed cavity@7–9#. A naive approach is to make pe
turbations in the amplitude of oscillation. However, this p
turbative treatment has only a very limited range of validi
the appearance of secular terms proportional to the time
plies that after a short period the approximation bre
down. In this paper we apply a method inspired in the ren
malization group~RG! to treat these singular perturbation
The method has a wide range of application@10#, especially
to ordinary differential equation problems involving multip
scales, boundary layers, asymptotic matching, and W
analysis. The main advantage of the RG method is to prov
a simple and unified calculational method for all problems
this sort. In our present case, the application of the metho
the dynamical Casimir effect permits us to get a solution
the structure of the electromagnetic field within the cavit
that is valid for a period of time longer than that of th
perturbative case. With the solution at hand, we study lo
properties of the field such as the energy density. In ag
ment with other authors@6#, we show that the resonant mov
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ing wall induces an exponential growth of the total energ
and that peaks form inside the cavity, which travel at t
speed of light bouncing against the walls.

We consider a one-dimensional cavity formed by two p
fectly reflecting mirrors. One of them is fixed atx50, while
the other one performs an oscillatory motionL(t)5L0@1
1e sin(qpt/L0)#, with e!1 andqPN, i.e., the moving mirror
oscillates with a frequency equal to one of the eigenfrequ
cies of the cavity. We shall assume that the oscillations be
at t50, and that the mirror is at rest fort,0. Note that we
shall not treat the moving mirror as a degree of freed
~either classical or quantum!, but just as a given time-
dependent boundary for the electromagnetic field inside
cavity. The vector potentialA(x,t) satisfies the one-
dimensional field equationhA50 and the boundary condi
tions A(x50,t)5A„L(t),t…50 for all times. Therefore one
can express the field inside the cavity as

A~x,t !5 (
k51

`

@akck~x,t !1ak
†ck* ~x,t !#, ~1!

where the mode functionsck(x,t) are positive frequency
modes fort,0, andak andak

† are time-independent annih
lation and creation operators, respectively.

If one writes the modes in terms of a functionR(t) as@2#

ck~x,t !5
i

A4pk
~e2 ikpR~ t1x!2e2 ikpR~ t2x!!, ~2!

the boundary conditions are met provided that

R„t1L~ t !…2R„t2L~ t !…52. ~3!

The complete solution to the problem involves finding a s
lution R(t) in terms of the prescribed motionL(t). The
modes are positive frequency modes fort,0 if R(t)5t/L0
for 2L0<t<L0, which is indeed a solution to Eq.~3! for t
,0. Note that the boundary condition forR(t) involves its
values over the whole range of time2L0<t<L0.

In what follows, we will describe a method of finding a
analytical approximation to the solution of Eq.~3!. We shall
first obtain a perturbative solution by expanding in powers
the amplitudee ~Sec. III!. As this perturbative solution will
2113 © 1998 The American Physical Society
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2114 57DIEGO A. R. DALVIT AND FRANCISCO D. MAZZITELLI
contain secular terms, it will be valid only for short time
i.e., et/L0,1. Using RG techniques, we will be able to pe
form a resummation of the secular terms and obtain an a
lytical approximation valid for a longer period of tim
e2t/L0,1 ~Sec. IV!. In Sec. V we will use this solution to
describe the evolution of the mean value of the energy d
sity inside the cavity. In order to get acquainted with t
renormalization-group method, in Sec. II we will describe
simple example where the resummation of the secular te
is performed for a particular ordinary differential equatio
The reader already familiar with the work of Ref.@10# can
skip the next section.

II. A SIMPLE EXAMPLE

Let us consider the Rayleigh equation

d2y

dt2
1y1eH 1

3S dy

dt D
3

2
dy

dt J 50, ~4!

wheree is a small number. This is an interesting oscillat
because it can be shown that, for any initial condition a
any positivee, the exact solution becomes periodic at lo
times and therefore approaches a limit circle in phase sp
@11#.

The Rayleigh equation can be solved perturbatively us
an expansion in powers ofe, that is, y5y01ey11O(e2).
Up to first order ine, the perturbative solution reads

y~ t !5Y0sin~ t1Q0!1eH Y0

2 S 12
Y0

2

4 D ~ t2t0!sin~ t1Q0!

1
Y0

3

96
$cos@3~ t1Q0!#2cos~ t1Q0!%J 1O~e2!, ~5!

where Y0 and Q0 are constants determined by the initi
conditions at arbitraryt5t0. This perturbative solution doe
not become periodic and, therefore, it is not a good appr
mation for long times. Indeed, due to the presence of
secular term, the naive perturbative solution is valid only
times close to the initial timet0, and breaks down fore (t
2t0)>1. This is typical of systems showing paramet
resonance. Usually one has a system weakly coupled t
external resonant force, and as one tries to make a pertu
tive analysis, the corrections possess secular terms,
terms that grow linearly with time. In the following we sha
adopt the RG method to treat singular perturbations and
shall use it to make an improvement to the perturbative
lution, which shall be valid for longer times,e2(t2t0),1.
The basic idea@10# is to introduce an arbitrary timet, split
t2t0 as (t2t)1t2t0, and absorb the terms proportional
t2t0 into the ‘‘renormalized’’ counterpartsY(t) andQ(t)
of the ‘‘bare’’ parameters contained in the zeroth order
lution, that is,Y0 andQ0. Using this idea one eliminates th
secular terms proportional tot2t0, and the functiony(t)
takes the form
a-

n-

s
.

r
d

ce

g
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e
r

an
a-
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-

-

y~ t !5Ysin~ t1Q!1eH Y

2S 12
Y

4 D ~ t2t!sin~ t1Q!

1
Y3

96
$cos@3~ t1Q!#2cos~ t1Q!%J 1O~e2!, ~6!

where nowY and Q are functions oft. Now comes the
crucial point. Ast does not appear in the original equation
in the initial conditions, the solution Eq.~6! should not de-
pend ont. Therefore the partial derivative with respect tot
should vanish, i.e., (]y/]t) t50 for any t. This is the RG
equation, which implies

dY

dt
5e

Y

2S 12
Y2

4 D1O~e2!,

dQ

dt
5O~e2!. ~7!

The solutions to these equations are

Y~t!5Y~ t0!Fe2e~t2t0!1
Y2~ t0!

4
~12e2e~t2t0!!G21/2

1O„e2~t2t0!…,

Q~t!5Q~ t0!1O„e2~t2t0!…, ~8!

whereY(t0) andQ(t0) are constants to be determined by t
initial conditions. We still have the freedom to choose t
arbitrary timet. The obvious choice ist5t, since in this
way the secular term proportional tot2t in Eq. ~6! disap-
pears. Assuming the initial conditiony(t0)50, ẏ(t0)52a,
with a any real number, we findY(t0)52a and Q(t0)5
2t0. Finally, the RG-improved solution reads

y~ t !5Y~ t !sin~ t2t0!1e
Y~ t !3

96
$cos@3~ t2t0!#2cos~ t2t0!%

1O~e2!, ~9!

that is valid fore2(t2t0),1. Note that the improved solu
tion becomes periodic and approaches a limit circle of rad
2 for e(t2t0)@1.

It is interesting to remark the analogy with the usual R
approach in quantum field theory:t0 plays the role of the
ultraviolet cutoff ~although there are no divergences b
secular terms here!, Y0 and Q0 are the bare coupling con
stants, andY andQ are the renormalized counterparts eva
ated at the ‘‘scale’’t. The equation is ‘‘renormalizable’’
because the secular terms can be absorbed into the bar
rameters. As anticipated, the RG is a straightforward met
by which to obtain, from the naive perturbative solution,
improved solution which is valid for longer times. In th
particular example, it can be shown that the RG method
equivalent to multiple-scale analysis@11#, with the additional
practical advantage that it is not necessary to knowa priori
the multiple time scales.
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III. PERTURBATIVE SOLUTION TO THE DYNAMICAL
CASIMIR EFFECT

We will now solve Eq.~3! using a naive perturbative
expansion. We expand the functionR(t) in terms of the
small amplitudee and retain first order terms only,R(t)
5R0(t)1eR1(t). Equating terms of the same order we g

R0~ t1L0!2R0~ t2L0!52, ~10!

R1~ t1L0!2R1~ t2L0!52L0sinS qpt

L0
D @R08~ t1L0!

1R08~ t2L0!#. ~11!

The general solution to Eq.~10! is

R0~ t !5a1
t

L0
1 (

n>1
FAnsinS npt

L0
D1BncosS npt

L0
D G ,

~12!

wherea,An , andBn are constants determined by the boun
ary condition, that is, by the value ofR(t) for 2L0<t<L0.
Introducing this solution into Eq.~11! we obtain

2
1

2
@R1~ t1L0!2R1~ t2L0!#

5sinS qpt

L0
D1

p

2 (
n>1

n~21!nH AnFsinS ~q1n!pt

L0
D

1sinS ~q2n!pt

L0
D G1BnFcosS ~q1n!pt

L0
D

2cosS ~q2n!pt

L0
D G J , ~13!

whose general solution reads

R1~ t !5~21!q11
t

L0
S sinS qpt

L0
D

1
p

2 (
n>1

nH AnFsinS ~q1n!pt

L0
D1sinS ~q2n!pt

L0
D G

1BnFcosS ~q1n!pt

L0
D2cosS ~q2n!pt

L0
D G J D 1g~ t !,

~14!

whereg(t) is an arbitrary periodic function with period 2L0.
We see that, as in the case of the Rayleigh oscillator,
perturbative correction contains secular terms that grow
early in time. Therefore this approximation will be valid on
for short times, that is,e t/L0,1.

If we assume that the boundary condition forR(t) is al-
ready satisfied byR0(t), then the periodic functiong(t) must
be chosen in such a way thatR1(t)50 for 2L0<t<L0.
Therefore
-

e
-

g~2pL01z!5~21!q
z

L0
H sinS qpz

L0
D

1
p

2 (
n>1

nH AnFsinS ~q1n!pz

L0
D

1sinS ~q2n!pz

L0
D G1BnFcosS ~q1n!pz

L0
D

2cosS ~q2n!pz

L0
D G J J , ~15!

where t52pL01z, p50,1,2, . . . , and2L0<z<L0. Given
t, the value of the integerp is obtained asp5 1

2 int(t/L0) or
p5 1

2 @ int(t/L0)11# for int(t/L0) even or odd, respectively
Note that during the first period (p50), g(t) makesR1(t)
vanish identically. As we have already seen, since the mi
is at rest fort,0, we must imposeR(t)5t/L0 for 2L0<t
<L0. Thereforea5An5Bn50, and the perturbative solu
tion reads

R~ t !5
t

L0
1e~21!q11F t

L0
sinS qpt

L0
D2

z

L0
sinS qpz

L0
D G .

~16!

The naive perturbative solution to the dynamical Casim
effect has been previously discussed in Ref.@7#. In that work
the periodic functiong(t) was taken equal to zero, whic
resulted in the omission of the third term in Eq.~16!. Thus
the solution obtained there does not satisfy the corr
boundary condition. Note, however, that after many perio
(1!t/L0!e21) both solutions practically coincide.

IV. RENORMALIZATION-GROUP IMPROVEMENT

We will now adapt the RG method of Sec. II in order
obtain a solution to Eq.~3! which is valid beyond the shor
time limit. Let us introduce the arbitrary timet and splitt as
t2t1t. The perturbative solution can then be written
@see Eqs.~12! and ~14!#

R~ t !5a~t!1 (
n>1

FAn~t!sinS npt

L0
D1Bn~t!cosS npt

L0
D G

1
t2t

L0
1e

t2t

L0
~21!q11XsinS qpt

L0
D

1
p

2 (
n>1

n~21!nH An~t!FsinS ~q1n!pt

L0
D

1sinS ~q2n!pt

L0
D G1Bn~t!FcosS ~q1n!pt

L0
D

2cosS ~q2n!pt

L0
D G J C1g~ t,t!1O~e2!, ~17!

where the bare parametersa, An , andBn have been replaced
by their renormalized counterpartsa(t), An(t), andBn(t).
Here g(t,t) denotes the functiong(t) of Eq. ~15! with the
same replacement. Note that theng(t,t) is no longer a peri-
odic function.
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The RG equation (]R/]t) t50 consists in the present cas
of three independent equations

]a~t!

]t
5

1

L0
1O~e2!, ~18!

]An~t!

]t
5e

~21!q11

L0
Fdnq1

p

2
$un2quAun2qu

2~n1q!An1q%G1O~e2!, ~19!

]Bn~t!

]t
5e

p~21!q11

2L0
@ un2quBun2qu1~n1q!Bn1q#

1O~e2!, ~20!

where we recall that the indexn is a positive integer. The
solution to Eq.~18! is trivial: a(t)5t/L01k, with k a con-
stant to be determined. If one writesAn5Ãn2Ã2n and Bn

5B̃n2B̃2n (n>1), where the new variables satisfy

]Ãm

]t!
5

2

p
dmq1~m2q!Ãm2q2~m1q!Ãm1q1O~e2!,

~21!

]B̃m

]t!
5~m2q!B̃m2q1~m1q!B̃m1q1O~e2!, ~22!

thenAn andBn satisfy Eqs.~19! and~20!, respectively. Here
we have introduced a new timet![tep(21)q11/(2L0).
Since this set of first order differential equations ensures
independence of the solutionR(t) with t, one can sett5t,
which makes the terms proportional tot2t in Eq. ~17! van-
ish identically.

The initial conditions for these differential equations a
dictated by the perturbative solution:a(0)5Ãm(0)5B̃m(0)
50. This means thatk50 and thatB̃m(t)50 for all t. The
coefficientsÃm are not all zero due to the presence of t
inhomogeneous term (2/p)dmq . In order to solve the equa
tion corresponding to these coefficients we introduce
generating functionalF(s,t!)5(msmÃm(t!). Using Eq.
~21! we see that it satisfies the following differential equ
tion:

]F

]t!
5

2

p
sq1

]F

]s
@sq112s12q#, ~23!

with boundary conditionF(s,t!50)50. We make the fol-
lowing ansatz for the solutionF(s,t!)5F@e2t!

g(s)#
1h(s), whereF@•••#, g(s) and h(s) are functions to be
determined. Introducing this form of the generating fun
tional into the differential equation, one determines the l
two functions. The functionF is determined once the initia
boundary condition is imposed. Finally the solution reads

F~s,t!!52
2

pq
lnFe2qt!

~11sq!1eqt!
~12sq!

2
G . ~24!
e

e

-

-
t

In order to get the coefficientsÃm we expand this solution in
powers ofs. In this way we obtain that the only nonvanish
ing coefficients areÃm50(t!)52(2/pq)ln(coshqt!) and
Ãm5q j5(2/pq j)tanhj(qt!) with j PN. Note in particular that
Ãm,050, which then means that the original coefficientsAn

are equal to theÃn’s.
The RG-improved solution forR(t) can be obtained from

Eq. ~17! by settingt5t. It is given by

R~ t !5
t

L0
1(

j >1
Aq j~ t !sinS q jpt

L0
D1eg~ t,t !. ~25!

Using the explicit form of the coefficientsÃm we find

(
j >1

Aq j~ t !sinS q jpt

L0
D52

2

pq
Im ln@11j1~12j!eiqpt/L0#,

~26!

where we have definedj5exp@(21)q11pqet/L0#. The ~now
nonperiodic! function g(t,t) can be easily evaluated,

g~ t,t !5~21!q
z

L0
sinS qpz

L0
D F11(

j >1
Aq j~ t !q jcosS q jpz

L0
D G

5~21!q
z

L0
sinS qpz

L0
D

3F 2j

11j21~12j2!cos~pqz/L0!
G . ~27!

Finally, the RG-improved solution reads

R~ t !5
t

L0
2

2

pq
Im ln@11j1~12j!eiqpt/L0#

1e~21!q
z

L0
sinS qpz

L0
D

3F 2j

11j21~12j2!cos~pqz/L0!
G . ~28!

It is worth mentioning that this solution is valid as long
e2t/L0,1, that is, the range of validity of the solution
longer than the perturbative one (e t/L0,1). In Fig. 1 we
plot this function for the particular caseq54.

A solution to Eq.~3! in the long time limit was already
obtained in@8# using a different procedure. It coincides wit
our first two terms in Eq.~28!. There is perfect agreemen
between both solutions at long times because it can be sh
that the third term in Eq.~28! is negligible in this limit~see
Appendix A!. However, as we have mentioned in the prece
ing section, this term@that comes from the periodic functio
g(t)# is crucial for the solution to satisfy the correct boun
ary condition at short times.

V. ENERGY DENSITY INSIDE THE CAVITY

In order to study the local properties of the electroma
netic field inside the cavity, we concentrate on the ene
density of the field
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^T00~x,t !&5
1

2F K S ]A~x,t !

]t D 2L 1 K S ]A~x,t !

]x D 2L G , ~29!

where the expectation values are taken with respect to
vacuum state. Using the well-known point splitting meth
to regularize the divergence appearing in the energy den
@3#, one can obtain the following expression for the ren
malized energy density,̂ T00(x,t)&52 f (t1x)2 f (t2x),
where

f 5
1

24pFR98

R8
2

3

2S R9

R8
D 2

1
p2

2
~R8!2G . ~30!

This expression involves second and third derivatives
R(t). As R8(t) is discontinuous att5(2p11)L0, p
50,1,2, . . . @see Eq.~28!#, then the energy density will de
velop a d function singularity which will be infinitely re-
flected back and forth between the mirrors. The physical
gin of this singularity is the initial discontinuity of the wa
velocity. We will ignore this singularity in what follows.

The structure of the electromagnetic field within the ca
ity for our solutionR(t) is similar to that for other existing
solutions in the literature. In particular, forq>2 the energy
density grows exponentially in the form ofq traveling wave
packets which become narrower and higher as time
creases. The total energy within the plates increases e
nentially at the expense of the energy needed to keep
plate moving. In Fig. 2 we show the energy density pro
between plates for a fixed time and for the caseq54. As
time evolves, the peaks move back and forth bounc
against the mirrors. The height of the peaks increases
e2pqet/L0 and their width decreases ase2pqet/L0, so that the
total area beneath each peak, and hence the total en
grows asepqet/L0. Apart from this exponential growth, ther
are ‘‘sub-Casimir’’ regions: between the peaks the ene
density takes valuesq2 times smaller than the static Casim
case,̂ T00&static52p/24L0

2. One can prove all these prope
ties analytically by computing the energy density with t
solution given in Eq.~28! and its derivatives~see Appendix
B!. In Fig. 3 the energy density is shown as a function

FIG. 1. R(t) vs t/L0 as given by Eq.~28!. The values of the
parameters areq54 ande50.01.
he
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time at the midpoint between plates, also for theq54 case.
A rather different picture appears when one considers

q51 case, that corresponds to an oscillation frequency eq
to the fundamental frequency of the cavity. In this case
energy density at a given point oscillates in time around
static Casimir value, and its time average coincides with t
value.

VI. CONCLUSIONS

In this paper we have studied the one-dimensional
namical Casimir effect of a resonant oscillating cavity. F
this one-dimensional case, the modes of the electromagn
field can be expressed in terms of the solution to the
called Moore equation. We have used a renormalizati
group improvement of the naive perturbative solution and
have succeeded in obtaining an analytic solution which i

FIG. 2. Energy density profile between plates for fixed tim
t/L0520.4 for the q54 case. The amplitude coefficient ise
50.01.

FIG. 3. Energy density as a function of time for the midpo
x/L050.5 between plates. The parameters areq54 ande50.01.
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valid up to timest,L0e22, thus extending the range of va
lidity of the perturbative solution (t,L0e21). We have cal-
culated the energy density inside the cavity and we h
shown that a nontrivial structure appears, with a series
peaks that grow exponentially in time and move back a
forth bouncing against the mirrors. Although this structu
has already been found in a previous work@6#, here we have
presented an analytic derivation based on
renormalization-group method described in@10#. We expect
this method to be useful to analyze the more realistic sit
tion of a three-dimensional oscillating cavity. This analy
can be performed by studying the set of differential eq
tions satisfied by the modes of the electromagnetic field@9#.
This topic will be the subject of further investigation.
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APPENDIX A: SHORT TIME AND LONG TIME
BEHAVIOR OF R„t…

In this appendix we analyze the short time (e t/L0!1)
and long time (e t/L0@1) behavior of the RG-improved
functionR(t) given in Eq.~28!. Let us first split the solution
asR(t)5Rs(t)1Rnp(t), where

Rs~ t !5
t

L0
2

2

pq
Im ln@11j1~12j!eiqpt/L0#

5
t

L0
2

2

pq
arctanF sin~qpt/L0!

~11j!/~12j!1cos~qpt/L0!G ,
~A1!

Rnp~ t !5e~21!q
z

L0
sinS qpz

L0
D

3F 2j

11j21~12j2!cos~pqz/L0!
G , ~A2!

with

j5expF ~21!q11pqet

L0
G . ~A3!

The functionRnp stems from the RG improvement of th
periodic functiong(t), and it is nonperiodic. The variablez
(2L0<z<L0) is given in terms oft as z5t22pL0 with
p50,1,2, . . . . This integerp is obtained from the value tha
t takes as p5 1

2 int(t/L0) or p5 1
2 @ int(t/L0)11#, for

int(t/L0) even or odd, respectively.
For the short time limitt!e21L0, these functions are

Rs~ t !'
t

L0
2~21!q

et

L0
sinS qpt

L0
D ,
e
of
d

e

-

-

r-
es

Rnp~ t !'~21!q
ez

L0
sinS qpz

L0
D , ~A4!

which then leads to the perturbative solution given in E
~16!.

For the long time limitt@e21L0 ~but t,e22L0 since this
poses the upper limit for the validity of our RG solution!, we
analyzeRs andRnp separately. We want to show that in th
limit, the latter function is negligible. This can be graphica
verified, but here we present an analytical demonstrat
The functionRs has a first term, linear in time, and a seco
one, that for late times becomes an oscillating function. T
amplitude of the oscillations is independent ofe. Due to this
second term,Rs develops a staircase form for long times,
shown in Fig. 1. Within regions oft between odd multiples
of L0 ~i.e., in each periodp), there appearq jumps, located
at values oft satisfying cos(qpt/L0)571, the upper sign cor-
responding to even values ofq and the lower one to odd
values ofq. Next we calculate the first derivative ofRs .
Sincedj/dt is proportional toej, one can differentiate the
functionRs with respect to time, treatingj as a constant. The
first derivative is thenRs8(t)52jc(t), where

c~ t !5
1

L0@11j21~12j2!cos~qpt/L0!#
. ~A5!

Using Eq.~A3!, we see thatj vanishes~diverges! exponen-
tially for q even ~odd! at long times. For evenq, the first
derivativeRs8 develops peaks for timestn5@(2n11)L0#/q,
with n an integer. The height of these peaks grows expon
tially as j21. Between peaks,Rs8 vanishes exponentially fo
long times. In a similar fashion, for oddq, the first derivative
develops peaks attn52nL0 /q. In the following, we shall
consider only the even case, the odd one being comple
similar.

Let us now analyze the functionRnp. Once again treating
j as a constant when differentiating with respect to time, t
function can be expressed in terms of the first derivative
Rs as follows:

Rnp~ t !5~21!qezsinS qpt

L0
DRs8~ t !. ~A6!

We see thatRnp is the product of a bounded factor (uzu
,L0) times a functionF(t)[sin(qpt/L0)Rs8(t) that is propor-
tional to the first derivative ofRs and might thus be un-
bounded. We shall now show that this isnot the case. Far
from the position of the peaks,F is bounded becauseRs8 is.
In a surrounding oftn , we expressF as

F~d!52
2pqjd

L0@~12j2!~p2q2d2/2!12j2#
, ~A7!

whered5(t2tn)/L0. First, we note that this function van
ishes ford50, i.e.,Rnp(t5tn)50. Second, this function ha
extrema equidistant from tn located at d65
62j/pqA12j2 and at these pointsF(d6)571/L0A12j2.
Since for long timesj→0, we conclude thatF(d6) is
bounded by 1/L0. Consequently,Rnp is a correction of order
e to the second term of Eq.~A1!.
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APPENDIX B: STRUCTURE OF THE
ELECTROMAGNETIC FIELD

In this appendix we study briefly the structure of the ele
tromagnetic field within the cavity as given by Eqs.~29! and
~30! for our solutionR(t), in order to understand the form o
the energy density profile shown in Figs. 2 and 3 in the lo
time regimeet/L0.1. As in Appendix A we will splitR(t)
asR(t)5Rs1Rnp @see Eqs.~A1! and~A2!#. In order to ana-
lyze the energy-momentum tensor, we need to study the
three derivatives of the solutionR(t). For Rs we get

Rs8~ t !52jc~ t !, ~B1!

Rs9~ t !52j~12j2!pqsinS pqt

L0
Dc2~ t !, ~B2!

Rs98~ t !52j~12j2!~pq!2H ~11c2!cosS pqt

L0
D

1~12j2!F11sin2S pqt

L0
D G J c3~ t !, ~B3!

c~ t !5
1

L0@11j21~12j2!cos~qpt/L0!#
, ~B4!
. A
-

g

st

where again we treatj as a constant. For evenq, all these
derivatives develop peaks at timestn5@(2n11)L0#/q. As
can be easily seen from the above equations, the heigh
the peaks for themth derivative of Rs is proportional to
j2m. Using the same methods as in Appendix A, one c
show ~after some algebra! that near the timestn , the mth
derivative ofRnp also has peaks whose heights are prop
tional toej2m. Sincee!1, it means that at long times all th
derivatives ofRnp are negligible with respect to those ofRs .
The form of the energy-momentum tensor will be govern
just by the first part of our solution, namely, byRs .

Let us concentrate only on the contribution to the ene
density which is proportional toR82 @see Eq.~30!#. From the
above discussion it is clear thatT00 will develop peaks which
grow as e2pqet/L0. Their width decreases exponentially a
e2pqet/L0, so the total area of the peaks grows exponentia
The same holds for the total energy in the cavity. The ana
sis of the other two terms of Eq.~30! leads to the same
conclusion.

The caseq51 shows a different behavior. Indeed, whe
the energy density of the field is computed using the deri
tives of Rs given above, there is a cancellation between
different contributions in Eq.~30! and the final answer coin
cides with the static Casimir value.
.
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